Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Infect Dis Now ; 52(8): 453-455, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2179305

ABSTRACT

Real-time PCR plays a key role in the diagnosis of viral infections. Multiple kits can detect or quantify genomes of various viruses with the same thermocycling program. Detection of RNA viruses includes an additional step of reverse transcription and challenge their detection in a single run with DNA viruses. We investigated the analytical performance of HSV-1, HSV-2 and VZV DNA quantification with Altona RealStar® PCR kits using the RT-PCR program for RNA viruses instead of the PCR program for DNA viruses. For each three viruses, Bland-Altman distribution did not show differences between both programs, and quantification curves generated with both thermocycling programs confirmed high correlation (R2 ≥ 0.9983). Detection of low viral load samples was evaluated, on 10-times repeat-test. All replicate samples were detected with both thermocycling programs and were quantified at similar viral loads (bias in log10 copies/mL: +0.05 (HSV-1), -0.01 (HSV-2) and +0.25 (VZV)). This confirms the feasibility of using the RT-PCR thermocycling program to detect and quantify the genome of RNA and DNA viruses in a single run.


Subject(s)
RNA Viruses , Humans , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction , DNA Viruses
2.
BMC Bioinformatics ; 23(1): 196, 2022 May 28.
Article in English | MEDLINE | ID: covidwho-1951051

ABSTRACT

BACKGROUND: SARS-CoV-2 is the highly transmissible etiologic agent of coronavirus disease 2019 (COVID-19) and has become a global scientific and public health challenge since December 2019. Several new variants of SARS-CoV-2 have emerged globally raising concern about prevention and treatment of COVID-19. Early detection and in-depth analysis of the emerging variants allowing pre-emptive alert and mitigation efforts are thus of paramount importance. RESULTS: Here we present ClusTRace, a novel bioinformatic pipeline for a fast and scalable analysis of sequence clusters or clades in large viral phylogenies. ClusTRace offers several high-level functionalities including lineage assignment, outlier filtering, aligning, phylogenetic tree reconstruction, cluster extraction, variant calling, visualization and reporting. ClusTRace was developed as an aid for COVID-19 transmission chain tracing in Finland with the main emphasis on fast screening of phylogenies for markers of super-spreading events and other features of concern, such as high rates of cluster growth and/or accumulation of novel mutations. CONCLUSIONS: ClusTRace provides an effective interface that can significantly cut down learning and operating costs related to complex bioinformatic analysis of large viral sequence sets and phylogenies. All code is freely available from https://bitbucket.org/plyusnin/clustrace/.


Subject(s)
COVID-19 , Computational Biology , DNA Viruses , Humans , Phylogeny , SARS-CoV-2/genetics
3.
Microb Biotechnol ; 15(9): 2488-2501, 2022 09.
Article in English | MEDLINE | ID: covidwho-1864192

ABSTRACT

Numerous viral outbreaks have threatened us throughout history. Here, we demonstrated a nucleic acid-based antiviral strategy named AntiV-SGN. Unlike those CRISPR-mediated methods, AntiV-SGN has advantages of no targets' sequence limitation, such as protospacer adjacent motif (PAM) or protospacer flanking sequence (PFS), being universal for both DNA and RNA viruses. AntiV-SGN was composed of a FEN1 protein and specific hpDNAs targeting viruses' nucleic acid. Its antiviral ability was tested on SARS-CoV-2 and HBV respectively. Reporter assays in human cells first illustrated the feasibility of AntiV-SGN. Then, it was verified that AntiV-SGN destroyed about 50% of live RNAs of SARS-CoV-2 in Vero cells and 90% cccDNA of HBV in HepG2.2.15 cells. It was also able to remove viral DNA integrated into the host's genome. In the mouse model, AntiV-SGN can be used to significantly reduce HBV expression at a level of 90%. Actually, in some cases, when viruses mutate to eliminate PAM/PFS or hosts were infected by both DNA and RNA viruses, AntiV-SGN could be a choice. Collectively, this study provided a proof-of-concept antiviral strategy of AntiV-SGN, which has potential clinical value for targeting a wide variety of human pathogens, both known and newly identified.


Subject(s)
COVID-19 , Nucleic Acids , Viruses , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , DNA Viruses , Humans , Mice , RNA , SARS-CoV-2/genetics , Vero Cells
4.
Front Immunol ; 13: 889736, 2022.
Article in English | MEDLINE | ID: covidwho-1875416

ABSTRACT

During the pre-vaccine era of the COVID-19 pandemic convalescent plasma has once again emerged as a major potential therapeutic form of passive immunization that in specific cases still represents irreplaceable treatment option. There is a growing concern that variable concentration of neutralizing antibodies, present in convalescent plasma which originates from different donors, apparently affects its effectiveness. The drawback can be overcome through the downstream process of immunoglobulin fraction purification into a standardized product of improved safety and efficacy. All modern procedures are quite lengthy processes. They are also based on fractionation of large plasma quantities whose collection is not attainable during an epidemic. When outbreaks of infectious diseases are occurring more frequently, there is a great need for a more sustainable production approach that would be goal-oriented towards assuring easily and readily available immunoglobulin of therapeutic relevance. We propose a refinement strategy for the IgG preparation achieved through simplification and reduction of the processing steps. It was designed as a small but scalable process to offer an immediately available treatment option that would simultaneously be harmonized with an increased availability of convalescent plasma over the viral outbreak time-course. Concerning the ongoing pandemic status of the COVID-19, the proof of concept was demonstrated on anti-SARS-CoV-2 convalescent plasma but is likely applicable to any other type depending on the current needs. It was guided by the idea of persistent keeping of IgG molecules in the solution, so that protection of their native structure could be assured. Our manufacturing procedure provided a high-quality IgG product of above the average recovery whose composition profile was analyzed by mass spectrometry as quality control check. It was proved free from IgA and IgM as mediators of adverse transfusion reactions, as well as of any other residual impurities, since only IgG fragments were identified. The proportion of S protein-specific IgGs remained unchanged relative to the convalescent plasma. Undisturbed IgG subclass composition was accomplished as well. However, the fractionation principle affected the final product's capacity to neutralize wild-type SARS-CoV-2 infectivity, reducing it by half. Decrease in neutralization potency significantly correlated with the amount of IgM in the starting material.


Subject(s)
COVID-19 , Immunoglobulin G , COVID-19/epidemiology , COVID-19/therapy , DNA Viruses , Humans , Immunization, Passive , Immunoglobulin M , Pandemics , SARS-CoV-2 , COVID-19 Serotherapy
5.
Sci Rep ; 12(1): 9109, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1873555

ABSTRACT

The COVID-19 pandemic has caused a multi-scale impact on the world population that started from a nano-scale respiratory virus and led to the shutdown of macro-scale economies. Direct transmission of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and its variants through aerosolized droplets is a major contributor towards increasing cases of this infection. To curb the spread, one of the best engineered solutions is the use of face masks to prevent the passage of infectious saliva micro-droplets from an infected person to a healthy person. The commercially available masks are single use, passive face-piece filters. These become difficult to breathe in during strenuous activities. Also, they need to be disposed regularly due to accumulation of unwanted particulate and pathogens over time. Frequent disposal of these masks is unsustainable for the environment. In this study, we have proposed a novel design for a filter for enhanced virus filtration, better breathability, and virus inactivation over time. The filter is called Hy-Cu named after its (Hy) drophobic properties and another significant layer comprises of copper (Cu). The breathability (pressure drop across filter) of Hy-Cu is tested and compared with widely used surgical masks and KN95 masks, both experimentally and numerically. The results show that the Hy-Cu filter offers at least 10% less air resistance as compared to commercially available masks. The experimental results on virus filtration and inactivation tests using MS2 bacteriophage (a similar protein structure as SARS-CoV-2) show that the novel filter has 90% filtering efficiency and 99% virus inactivation over a period of 2 h. This makes the Hy-Cu filter reusable and a judicious substitute to the single use masks.


Subject(s)
COVID-19 , Pandemics , COVID-19/prevention & control , DNA Viruses , Filtration , Humans , Levivirus , SARS-CoV-2
7.
Viruses ; 14(5)2022 05 05.
Article in English | MEDLINE | ID: covidwho-1820425

ABSTRACT

The International Virus Bioinformatics Meeting 2022 took place online, on 23-25 March 2022, and has attracted about 380 participants from all over the world. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The participants created a highly interactive scientific environment even without physical face-to-face interactions. This meeting is a focal point to gain an insight into the state-of-the-art of the virus bioinformatics research landscape and to interact with researchers in the forefront as well as aspiring young scientists. The meeting featured eight invited and 18 contributed talks in eight sessions on three days, as well as 52 posters, which were presented during three virtual poster sessions. The main topics were: SARS-CoV-2, viral emergence and surveillance, virus-host interactions, viral sequence analysis, virus identification and annotation, phages, and viral diversity. This report summarizes the main research findings and highlights presented at the meeting.


Subject(s)
COVID-19 , Viruses, Unclassified , Viruses , Computational Biology , DNA Viruses , Humans , SARS-CoV-2
8.
Nat Commun ; 13(1): 1687, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-1768823

ABSTRACT

Rapid and sensitive diagnostics of infectious diseases is an urgent and unmet need as evidenced by the COVID-19 pandemic. Here, we report a strategy, based on DIgitAl plasMONic nanobubble Detection (DIAMOND), to address this need. Plasmonic nanobubbles are transient vapor bubbles generated by laser heating of plasmonic nanoparticles (NPs) and allow single-NP detection. Using gold NPs as labels and an optofluidic setup, we demonstrate that DIAMOND achieves compartment-free digital counting and works on homogeneous immunoassays without separation and amplification steps. DIAMOND allows specific detection of respiratory syncytial virus spiked in nasal swab samples and achieves a detection limit of ~100 PFU/mL (equivalent to 1 RNA copy/µL), which is competitive with digital isothermal amplification for virus detection. Therefore, DIAMOND has the advantages including one-step and single-NP detection, direct sensing of intact viruses at room temperature, and no complex liquid handling, and is a platform technology for rapid and ultrasensitive diagnostics.


Subject(s)
COVID-19 , Pandemics , COVID-19/diagnosis , DNA Viruses , Gold , Humans , Lasers
9.
Antiviral Res ; 200: 105294, 2022 04.
Article in English | MEDLINE | ID: covidwho-1757111

ABSTRACT

Despite recent advancements in the development of vaccines and monoclonal antibody therapies for Ebola virus disease, treatment options remain limited. Moreover, management and containment of Ebola virus outbreaks is often hindered by the remote nature of the locations in which the outbreaks originate. Small-molecule compounds offer the advantage of being relatively cheap and easy to produce, transport and store, making them an interesting modality for the development of novel therapeutics against Ebola virus disease. Furthermore, the repurposing of small-molecule compounds, previously developed for alternative applications, can aid in reducing the time needed to bring potential therapeutics from bench to bedside. For this purpose, the Medicines for Malaria Venture provides collections of previously developed small-molecule compounds for screening against other infectious diseases. In this study, we used biologically contained Ebola virus to screen over 4,200 small-molecule drugs and drug-like compounds provided by the Medicines for Malaria Venture (i.e., the Pandemic Response Box and the COVID Box) and the Centre for Drug Design and Discovery (CD3, KU Leuven, Belgium). In addition to confirming known Ebola virus inhibitors, illustrating the validity of our screening assays, we identified eight novel selective Ebola virus inhibitors. Although the inhibitory potential of these compounds remains to be validated in vivo, they represent interesting compounds for the study of potential interventions against Ebola virus disease and might serve as a basis for the development of new therapeutics.


Subject(s)
COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA Viruses , Humans
10.
Sci Rep ; 12(1): 4576, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1751755

ABSTRACT

The genetic diversity of the Coronaviruses gives them different biological abilities, such as infect different cells and/or organisms, a wide spectrum of clinical manifestations, their different routes of dispersion, and viral transmission in a specific host. In recent decades, different Coronaviruses have emerged that are highly adapted for humans and causing serious diseases, leaving their host of unknown origin. The viral genome information is particularly important to enable the recognition of patterns linked to their biological characteristics, such as the specificity in the host-parasite relationship. Here, based on a previously computational tool, the Seq2Hosts, we developed a novel approach which uses new variables obtained from the frequency of spike-Coronaviruses codons, the Relative Synonymous Codon Usage (RSCU) to shed new light on the molecular mechanisms involved in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) host specificity. By using the RSCU obtained from nucleotide sequences before the SARS-CoV-2 pandemic, we assessed the possibility of know the hosts capable to be infected by these new emerging species, which was first identified infecting humans during 2019 in Wuhan, China. According to the model trained and validated using sequences available before the pandemic, bats are the most likely the natural host to the SARS-CoV-2 infection, as previously suggested in other studies that searched for the host viral origin.


Subject(s)
COVID-19 , Chiroptera , Animals , COVID-19/genetics , DNA Viruses , Genome, Viral , Humans , SARS-CoV-2/genetics
11.
Cells ; 11(6)2022 03 15.
Article in English | MEDLINE | ID: covidwho-1742343

ABSTRACT

Viruses are one of the most important concerns for human health, and overcoming viral infections is a worldwide challenge. However, researchers have been trying to manipulate viral genomes to overcome various disorders, including cancer, for vaccine development purposes. CRISPR (clustered regularly interspaced short palindromic repeats) is becoming one of the most functional and widely used tools for RNA and DNA manipulation in multiple organisms. This approach has provided an unprecedented opportunity for creating simple, inexpensive, specific, targeted, accurate, and practical manipulations of viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus-1 (HIV-1), and vaccinia virus. Furthermore, this method can be used to make an effective and precise diagnosis of viral infections. Nevertheless, a valid and scientifically designed CRISPR system is critical to make more effective and accurate changes in viruses. In this review, we have focused on the best and the most effective ways to design sgRNA, gene knock-in(s), and gene knock-out(s) for virus-targeted manipulation. Furthermore, we have emphasized the application of CRISPR technology in virus diagnosis and in finding significant genes involved in virus-host interactions.


Subject(s)
COVID-19 , Virus Diseases , Viruses , COVID-19/diagnosis , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA Viruses , Host Microbial Interactions , Humans , SARS-CoV-2/genetics , Virus Diseases/diagnosis , Virus Diseases/genetics , Viruses/genetics
12.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1686819

ABSTRACT

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.


Subject(s)
Amphibian Proteins/pharmacology , Amphibians/metabolism , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/chemistry , DNA Viruses/drug effects , RNA Viruses/drug effects , Amino Acid Sequence , Amphibian Proteins/chemistry , Amphibian Proteins/metabolism , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Antiviral Agents/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Lipids/chemistry , SARS-CoV-2/drug effects , Vero Cells
13.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625084

ABSTRACT

Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.


Subject(s)
Amphibian Proteins/pharmacology , Antimicrobial Peptides/pharmacology , Antiviral Agents/pharmacology , Ranidae/metabolism , Animals , Antimicrobial Cationic Peptides/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , DNA Viruses/drug effects , RNA Viruses/drug effects , SARS-CoV-2/drug effects , Vero Cells , Viral Envelope/drug effects , Viral Plaque Assay , Virus Diseases/drug therapy
14.
Water Res ; 210: 117995, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1577771

ABSTRACT

Sewage sludge, as a reservoir of viruses, may pose threats to human health. Understanding how virus particles interact with sludge is the key to controlling virus exposure and transmission. In this study, we investigated the recovery, survivability, and sorption of four typical virus surrogates with different structures (Phi6, MS2, T4, and Phix174) in sewage sludge. The most effective elution method varies by viral analyte, while the ultrafiltration method could significantly reduce the recovery loss for all four viruses. Compared with nonenveloped viruses, the poor recoveries of Phi6 during elution (<15%) limited its efficient detection. The inactivation kinetics of four viruses in solid-containing sludge were significantly faster than those in solid-removed samples at 25 °C, indicating that the solid fraction of sludge played an important role in virus inactivation. Although enveloped Phi6 was more vulnerable in both solid-removed and solid-containing sludge samples, it could remain viable for several hours at 25 °C and several days at 4 °C, which may pose an infection risk during sludge collection, transportation, and treatment process. The adsorption and desorption behavior of viruses in sludge could be affected by virus envelope structure, capsid proteins, and virus particle size. Phi6 adsorption to sludge was great with log KF of 6.51 ± 0.53, followed by Phix174, MS2, and T4. Additionally, more than 95% of Phi6, MS2, and T4 adsorbed to sludge were strongly bound, and a considerable fraction of strongly-bound virus was confirmed to retain viability. These results shed light on the environmental behavior of viruses in sewage sludge and provide a theoretical basis for the risk assessment for sludge treatment and disposal.


Subject(s)
Sewage , Viruses , DNA Viruses , Humans , Ultrafiltration , Virus Inactivation
15.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1554804

ABSTRACT

In the last few years, microRNA-mediated regulation has been shown to be important in viral infections. In fact, viral microRNAs can alter cell physiology and act on the immune system; moreover, cellular microRNAs can regulate the virus cycle, influencing positively or negatively viral replication. Accordingly, microRNAs can represent diagnostic and prognostic biomarkers of infectious processes and a promising approach for designing targeted therapies. In the past 18 months, the COVID-19 infection from SARS-CoV-2 has engaged many researchers in the search for diagnostic and prognostic markers and the development of therapies. Although some research suggests that the SARS-CoV-2 genome can produce microRNAs and that host microRNAs may be involved in the cellular response to the virus, to date, not enough evidence has been provided. In this paper, using a focused bioinformatic approach exploring the SARS-CoV-2 genome, we propose that SARS-CoV-2 is able to produce microRNAs sharing a strong sequence homology with the human ones and also that human microRNAs may target viral RNA regulating the virus life cycle inside human cells. Interestingly, all viral miRNA sequences and some human miRNA target sites are conserved in more recent SARS-CoV-2 variants of concern (VOCs). Even if experimental evidence will be needed, in silico analysis represents a valuable source of information useful to understand the sophisticated molecular mechanisms of disease and to sustain biomedical applications.


Subject(s)
MicroRNAs/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , COVID-19/genetics , Computational Biology/methods , DNA Viruses/genetics , Gene Expression/genetics , Gene Expression Regulation, Viral/genetics , Genome, Viral/genetics , Host-Pathogen Interactions/genetics , RNA, Viral/genetics , Sequence Homology
16.
Lancet Microbe ; 3(4): e316-e323, 2022 04.
Article in English | MEDLINE | ID: covidwho-1517552

ABSTRACT

Biobanking infrastructures, which are crucial for responding early to new viral outbreaks, share pathogen genetic resources in an affordable, safe, and impartial manner and can provide expertise to address access and benefit-sharing issues. The European Virus Archive has had a crucial role in the global response to the COVID-19 pandemic by distributing EU-subsidised (free of charge) viral resources to users worldwide, providing non-monetary benefit sharing, implementing access and benefit-sharing compliance, and raising access and benefit-sharing awareness among members and users. All currently available SARS-CoV-2 material in the European Virus Archive catalogue, including variants of concern, are not access and benefit-sharing cases per se, but multilateral benefit-sharing has nevertheless occurred. We propose and discuss how a multilateral system enabling access and benefit-sharing from pathogen genetic resources, based on the European Virus Archive operational model, could help bridge the discrepancies between the current bilateral legal framework for pathogen genetic resources and actual pandemic response practices.


Subject(s)
COVID-19 , Viruses, Unclassified , Viruses , Biological Specimen Banks , COVID-19/epidemiology , DNA Viruses , Humans , Pandemics , SARS-CoV-2
17.
Talanta ; 242: 122989, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1473494

ABSTRACT

Virus surveillance and discovery are crucial for virus prediction and outbreak preparedness. Virus samples are frequently bulky and complicated so that effective virus detection remain challenging. Herein, we develop an 3D electrostatic microfluidic platform to rapidly and label-free enrich viruses from bulky samples at low concentrations. The platform consists of double microchannels for streamlining large volume processing and electrodes for enriching viruses by electrostatic interaction. The trajectories of simulation show that particle is successfully enriched under different forces of electrostatic field and different sample flow rates. We demonstrate that the electrostatic microfluidic platform can increase the limit of detection in 100-fold higher based on real-time PCR quantified analysis. Our design thus provides a simple, rapid, label-free and high-throughput viruses concentration platform and would thus have significant utility for various viral detection.


Subject(s)
Microfluidic Analytical Techniques , Viruses , DNA Viruses , Electrodes , Microfluidics , Static Electricity
18.
Emerg Infect Dis ; 27(9): 2323-2332, 2021 09.
Article in English | MEDLINE | ID: covidwho-1406036

ABSTRACT

We characterized common exposures reported by a convenience sample of 202 US patients with coronavirus disease during January-April 2020 and identified factors associated with presumed household transmission. The most commonly reported settings of known exposure were households and healthcare facilities; among case-patients who had known contact with a confirmed case-patient compared with those who did not, healthcare occupations were more common. Among case-patients without known contact, use of public transportation was more common. Within the household, presumed transmission was highest from older (>65 years) index case-patients and from children to parents, independent of index case-patient age. These findings may inform guidance for limiting transmission and emphasize the value of testing to identify community-acquired infections.


Subject(s)
COVID-19 , Aged , COVID-19/transmission , Child , DNA Viruses , Family Characteristics , Humans , SARS-CoV-2 , United States/epidemiology
20.
Int J Mol Sci ; 22(17)2021 Aug 29.
Article in English | MEDLINE | ID: covidwho-1374429

ABSTRACT

Heat shock proteins (HSPs) are a large group of chaperones found in most eukaryotes and bacteria. They are responsible for the correct protein folding, protection of the cell against stressors, presenting immune and inflammatory cytokines; furthermore, they are important factors in regulating cell differentiation, survival and death. Although the biological function of HSPs is to maintain cell homeostasis, some of them can be used by viruses both to fold their proteins and increase the chances of survival in unfavorable host conditions. Folding viral proteins as well as replicating many different viruses are carried out by, among others, proteins from the HSP70 and HSP90 families. In some cases, the HSP70 family proteins directly interact with viral polymerase to enhance viral replication or they can facilitate the formation of a viral replication complex and/or maintain the stability of complex proteins. It is known that HSP90 is important for the expression of viral genes at both the transcriptional and the translational levels. Both of these HSPs can form a complex with HSP90 and, consequently, facilitate the entry of the virus into the cell. Current studies have shown the biological significance of HSPs in the course of infection SARS-CoV-2. A comprehensive understanding of chaperone use during viral infection will provide new insight into viral replication mechanisms and therapeutic potential. The aim of this study is to describe the molecular basis of HSP70 and HSP90 participation in some viral infections and the potential use of these proteins in antiviral therapy.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Virus Diseases/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , DNA Viruses/physiology , Humans , Protein Isoforms/metabolism , RNA Viruses/physiology , SARS-CoV-2/isolation & purification , Virus Diseases/metabolism , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL